Zhennan Wan

Phone: (+86) 18811080093 Email: <u>zhennan018@gmail.com</u> Website: https://zhennan1.github.io/

Education

Tsinghua University

Bachelor of Science in Computer Science and Technology

Major GPA: 3.76/4.0

Publications

Scaling External Knowledge Input Beyond Context Windows of LLMs via Multi-Agent Collaboration

Zijun Liu*, **Zhennan Wan***, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Yang Liu

arXiv 2025. Paper; GitHub

Research Experience

Natural Language Processing Lab, Tsinghua University (THUNLP)

September 2024

June 2026 (Expected)

Title: Scaling External Knowledge Input Beyond Context Windows of LLMs

- May 2025

Supervisors: Associate Researcher Peng Li, Professor Yang Liu

Developed a multi-agent framework, ExtAgents, to overcome the context window limitations of current large language models (LLMs) and enable better scalability in

inference-time knowledge integration without longer-context training.

3D Visual Computing and Machine Intelligence (3DVICI Lab), Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University

January 2024

– August 2024

Title: Editing Human Videos for Robotic Skill Training

Supervisor: Assistant Professor Li Yi

Utilized video editing techniques to convert human hand-object interaction videos into robotic hand-object interaction videos; extracted 6D poses of human videos; compared human data with robot data, referencing pipelines such as OpenVLA, to validate the effectiveness of human videos for robotic training.

${\bf State\ Key\ Laboratory\ of\ Intelligent\ Technology\ and\ Systems,\ Dept.\ of\ Comp.\ Sci.\ \&\ Tech.,}$

July 2023

- August 2023

Title: Human-Machine Collaborative Operation of Super-functional Prosthetic Hands

Supervisor: Assistant Professor Bin Fang

Trained neural network models to extract human hand movements from electromyographic signals of the human arm.

Course Project

Tsinghua University

Frontiers in AI safety and Governance

May 2025

Title: Adaptive Safety Priming: Inference-Time Safeguards for Large Reasoning Models Developed a lightweight and dynamic safety mechanism, Adaptive Safety Priming (ASP), for large reasoning models (LRM) at inference time, which leverages their step-by-step inference process to enable real-time intervention. This approach provides a more adaptive and resource efficient path to develop robustly safe models. Report

– June 2025

Selected Awards

Tsinghua University Software Engineering Outstanding Project Award

June 2024

Skills

English: CET-6, Score 601/710; Programming Languages: C, C++, Python; Tools: Pytorch, Linux